If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x-16x^2+48=-48
We move all terms to the left:
64x-16x^2+48-(-48)=0
We add all the numbers together, and all the variables
-16x^2+64x+96=0
a = -16; b = 64; c = +96;
Δ = b2-4ac
Δ = 642-4·(-16)·96
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-32\sqrt{10}}{2*-16}=\frac{-64-32\sqrt{10}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+32\sqrt{10}}{2*-16}=\frac{-64+32\sqrt{10}}{-32} $
| y=3*4 | | 7x+3=9x–5 | | 98=7(q+4) | | 3*4=y | | -9g+-25=56 | | 5(g+20)=-90 | | 5t-32=23 | | 7j+19=75 | | r+27/6=8 | | r+27/6=6 | | 5-3n=-34 | | 18=(-3y) | | 1/3t+2/5t=33 | | 2=d/4-2 | | 14=24-2g | | -51=-u/7 | | z/3+24=27 | | 10j+26=96 | | 8k+13=45 | | 3(j-51)=48 | | 6x+-3=7x+3 | | y/10+5=7 | | 6(c+4)=36 | | 10-2m=8 | | 20-2g=10 | | u/4+6=10 | | 10=t/4+6 | | 48=(m-89) | | 14=8y-y | | 8=p/4+4 | | 4=2m-6 | | 5v+v=48 |